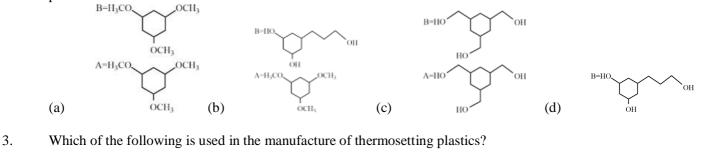


Max Marks: 200

4.


6.

ABHIMANYU BATCH CHEMISTRY : PART TEST Set - B Topic: Organic FLT

1. $CH_3CN \xrightarrow{Na+C_2H_5OH} X$

The co	mpound X is						
(a)	CH ₃ CONH ₂	(b)	CH ₃ CH ₂ NH ₂	(c)	C_2H_6	(d)	CH ₃ NHCH ₃

2. Among the compounds A and B with molecular formula $C_9H_{18}O_3$, A is having higher boiling point the B. The possible structures of A and B are:

(a) Formaldehyde (b) Acetaldehyde (c) Acetone (d) Benzaldehyde

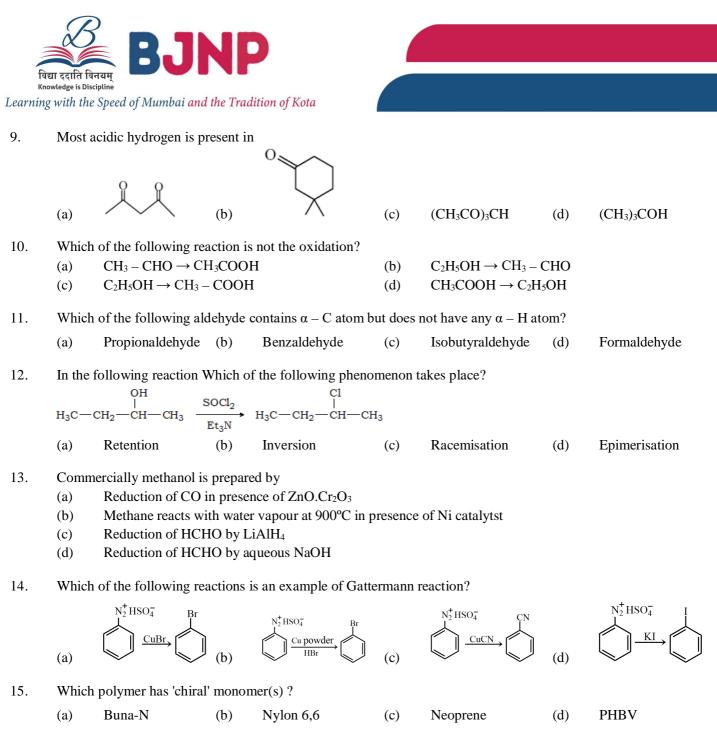
(a) Keratin (b) Haemoglobin (c) Ribonuclease (d) Adenine

Which one of the following biomolecules is insoluble in water

5. An aromatic compound 'A' (C_7H_9N) on reacting with NaNO₂/HCl at 0°C forms benzyl alcohol and nitrogen gas. The number of isomers possible for the compound 'A' is (a) 5 (b) 7 (c) 3 (d) 6

In CH₃CH₂Br, % of Br is

(a) 80 (b) 75 (c) 70 (d) 7


7. Some meta-directing substituents in aromatic substitution are given. Which one is most deactivating?

(a) $-C \equiv N$ (b) $-SO_3H$ (c) -COOH (d) $-NO_2$ 8. The charring of sugar, when treated with conc. H_2SO_4 is due to

(a) Oxidation (b) Reduction (c) Dehydration (d) Hydrolysis

Space for Rough Work

Date: 09.10.2022

- 16. The function of anhydrous $AlCl_3$ in the Friedel-Craft's reaction is to
 - (a) Absorb water
 (b) Absorb HCl
 (c) To produce electrophile
 (d) To produce nucleophile

The correct increasing order of boiling points of comparable molecular masses of the following compounds. 17. n – Butane Β. Methoxy ethane C. propanal A. E. propan - 1 - ol (a) A < B < C < D < E(b)A < C < D < B < E (c) $A < B < D < C < E \quad (d)$

A < B < E < D < C $C_3H_8 + Cl_2 \xrightarrow{\text{Light}} C_3H_7Cl + HCl$ is an example of 18. (a) elimination (b) substitution (c) addition (d) rearrangement reaction 19. Fructose reduces Tollens' reagent due to : (a) Asymmetric carbons (b) Primary alcoholic group (c) Secondary alcoholic group Enolisation of fructose followed by conversion to aldehyde by base (d) 20. The homopolymer formed from 4-hydroxybutanoic acid is

D.

Acetone

	(a)	$+C-(CH_2)_3-O+_n$	(b)	$+ OC(CH_2)_3 - O +_n$	(c)	$+C(CH_2)_2C-O+n$	(d)	$\uparrow^{C(CH_2)_2C} \neg_n$
21.	The de	eficiency of vitamin	B_1 cause	es				
	(a)	Beri-beri	(b)	Scurvy	(c)	Rickets	(d)	Anaemia
22.	CH ₃ C	OCH ₃ can be obtain	ed by					
	(a)	Heating acetaldeh	yde with	n Methanol	(b)	Oxidation of n-prop	yl alcoh	ol
	(c)	Oxidation of isopr	ropyl alc	ohol	(d)	Reduction of propio	onic acid	1
23.	Six ca	rbon atoms of benze	ene are o	f				
	(a)	One type	(b)	Two types	(c)	Three types	(d)	Six types
24.	Which	one of the followin	g class o	of compounds is obta	ined by j	polymerization of ace	tylene?	
	(a)	Poly-ene	(b)	Poly-amide	(c)	Poly-yne	(d)	Poly-ester
25.	In the	preparation of Grig	nard reag	gent from haloalkane	, the met	al used is		
	(a)	Mg	(b)	Zn	(c)	Li	(d)	Κ

Date: 09.10.2022

ABHIMANYU BATCH MATHEMATICS : PART TEST Topic: Differential Equation

26.	The ra	te of growth of ba	acteria is	proportional to nun	nber pre	sent. If initially, ther	e were 1	1000 bacteria and the		
	number doubles in 1 hour, then the number of bacteria after $2\frac{1}{2}$ hours are (Given: $\sqrt{2} = 1.414$)									
	(a)	$400\sqrt{2}$ approxim	nately		(b)	5056 approximatel	у			
	(c)	5656 approximate	ely		(d)	4646 approximatel	у			
27.							emperatu	are of the surrounding		
	0	-		of the body after one						
	(a)	30°C	(b)	40°C	(c)	15℃	(d)	20°C		
28.	If the	population grows (Given: log 2		· ·	then th	e time taken for the	populat	tion to be doubled is		
	(a)	4.3 years	(b)	8.64 years	(c)	10.27 years	(d)	6.8 years		
29.	Bacter	ia increases at the	rate prop	portional to the numb	ers of ba	acteria present. If the	original	number N doubles in		
	4 hour	rs, then the number	of bacte	ria will be 4N in						
	(a)	4 hours	(b)	2 hours	(c)	8 hours	(d)	6 hours		
30.	The p	opulation of a villa	ge increa	ases at a rate proport	ional to	the population at that	time. Ir	n a period of 10 years		
	the po	pulation grew from	20,000	to 40,000, then the po	opulatior	after another 20 year	rs is			
	(a)	1,60,000	(b)	1,20,000	(c)	1,00,000	(d)	80,000		
31.	The ra	te at which the me	etal coo	ls in moving air is p	roportio	nal to the difference	of temp	peratures between the		
	metal	and air. If the air te	mperatu	re is 290 K and the m	netal tem	perature drops from 3	370 K to	330 K in 10 minutes,		
	then th	ne time required to o	drop the	temperature upto 295	5 K is					
	(a)	30 min	(b)	40 min	(c)	20 min	(d)	35 min		

Learning with the Speed of Mumbai and the Tradition of Kota

32. A spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally in 3 mm and 1 our later has been reduced to 2 mm, then the expression of radius r of the raindrop at any time t is _____ (where $0 \le t < 3$) (a) r = 3 - t (b) r = t + 3 (c) r = t + 5 (d) r = t - 5

33. A population P grew at the rate given by the equation $\frac{dP}{dt} = 0.05P$, then the population will be double in _____ years.

(a) $12 (\log 2)$ (b) $20 (\log 2)$ (c) $5 (\log 2)$ (d) $10 (\log 2)$

34. A bacteria culture is known to grow at a rate proportional to the amount present. If the initial number of bacteria is 300 and if it is observed that the population has increased by 20% after 2 hrs, then the expression for the approximate number of bacteria in such a culture is given by _____ (Given that $\log_e 1.2 = 0.18232$) (a) N = 300 \cdot e^{0.09116 t} (b) N = 300 \cdot e^{2 t} (c) N = 360 \cdot e^{2 t} (d) N = 360 \cdot e^{0.09116 t}

35. If the population grown at the rate of 8% per year then the time taken for the population to be doubled is ______ . (Given $\log 2 = 0.6912$)

- (a) 6.8 years (b) 4.3 years (c) 10.27 years (d) 8.64 years
- Bismath has half life period of 5 days. A sample originally has a mass of 1000 mg, then the mass of Bismath after 30 days is _____
 - (a) 15.625 mg (b) 13.625 mg (c) 14.625 mg (d) 16.625 mg
- 37. If the half life period of a substance is 5 years, then the total amount of substance after 15 years when initial amount is 64 gms is _____
 - (a) 2 gms (b) 8 gms (c) 16 gms (d) 32 gms
- 38. If the surrounding air is kept at 25°C and a body cools from 80°C to 50°C in 30 minutes them temperature of the body after one hour will be _____ approximately.
 - (a) $32.36 \,^{\circ}\text{C}$ (b) $31.72 \,^{\circ}\text{C}$ (c) $36.36 \,^{\circ}\text{C}$ (d) $34.75 \,^{\circ}\text{C}$

Learning with the Speed of Mumbai and the Tradition of Kota

39.	Popul	lation of a town incr	eases at	a rate proportional to	o the po	pulation at that time.	If it inci	reases from 40, 000 to
	60,00	00 in 40 years, then i	n anothe	er 20 years, the popul	lation wi	ill be (taking $\sqrt{1.5} = 1$.2247)	
	(a)	73,428	(b)	73,248	(c)	73,842	(d)	73,482
40.	Popul	lation of city increas	ses at a	rate proportional to	the popu	ulation. Within a peri	iod of 30) years the population
	grew	from 20 lakhs to 40	lakhs. A	fter a further period	of 15 ye	ars, the population of	the city	(in lakhs) will be
	(a)	56.2	(b)	56.3	(c)	56.4	(d)	none of these
41.	A pop	pulation grows at the	rate of	5% per year. Then th	e popula	ation will be doubled	in	
	(a)	$10 \cdot \log 2$ years	(b)	$20 \cdot \log 2$ years	(c)	$30 \cdot \log 2$ years	(d)	n.o.t.
42.	Supp	ose the rate of grow	th of a p	population is proport	ional to	the difference betwe	en some	maximum size P and
	the nu	umber N of individua	als in the	e population at time t	. If the p	oopulation size is N_0 a	t time t	= 0, then
	(a)	$\mathbf{N} = \mathbf{P} - (\mathbf{P} - \mathbf{N}_0) \mathbf{e}$	e^{-kt}		(b)	$N=P-N_0\cdot\ e^{-kt}$		
	(c)	$N = N_0 P \cdot e^{-kt}$			(d)	None of these		
43.	Bacte	eria in a culture mult	iply at a	rate proportional to	the num	ber present. If the or	iginal nu	mber N ₀ doubles in 3
						•		
	hours	, then the number of	bacteria	will be $4N_0$ in		-		
	hours (a)	then the number of 4.5 hrs.	bacteria	a will be $4N_0$ in 6 hrs	(c)	9 hrs	(d)	n.o.t
44.	(a)	4.5 hrs.	(b)	6 hrs				n.o.t e quantity of ice melts
44.	(a) An ic	4.5 hrs. e ball melts at a rate	(b) proport	6 hrs	of ice pr	esent at that instant. I		
44.	(a) An ic	4.5 hrs. e ball melts at a rate	(b) proport in hour,	6 hrs ional to the amount o	of ice pr	esent at that instant. I	f half th	
44.	(a) An ic in 20	4.5 hrs. e ball melts at a rate minutes, then after a	(b) proport in hour, riginal	6 hrs ional to the amount o	of ice pr t will be	esent at that instant. I	f half th	
44. 45.	 (a) An ic in 20 (a) (c) 	4.5 hrs. e ball melts at a rate minutes, then after a one third of the or one-fifth of the or	(b) proport in hour, riginal iginal	6 hrs ional to the amount of the amount of ice left	of ice protection of ice protection of ice protection of the prote	esent at that instant. I one-eighth of the o none of these	f half th	
	 (a) An ic in 20 (a) (c) Radiu 	4.5 hrs. The ball melts at a rate minutes, then after a one third of the or one-fifth of the or um disintegrates at a	(b) proport in hour, riginal riginal	6 hrs ional to the amount of the amount of ice left oportional to the amo	of ice protection of ice protection of ice protection of the prote	esent at that instant. I one-eighth of the o none of these	f half the original nal amou	e quantity of ice melts
	 (a) An ic in 20 (a) (c) Radiu 	4.5 hrs. The ball melts at a rate minutes, then after a one third of the or one-fifth of the or um disintegrates at a	(b) proport in hour, riginal riginal	6 hrs ional to the amount of the amount of ice left oportional to the amo	of ice protection of ice protection of ice protection of the prote	esent at that instant. I one-eighth of the o none of these sent. If half the origin	f half the original nal amou	e quantity of ice melts

Learning with the Speed of Mumbai and the Tradition of Kota

- 46. Rate of decay of radium varies as the amount present. If 60 mg are present now and the half life of radium is 1690 years, then the amount of radius present 100 years from now is
 (a) 56 mg
 (b) 57 mg
 (c) 58 mg
 (d) 59 mg
- 47. In a certain chemical reaction, the amount x of a substance is related to the speed of the reaction $\frac{dx}{dt}$ by the differential equation $\frac{dx}{dt} = k(a x)(2a x)$, where a, k are constants and x = 0 when t = 0. If x = 2 when t = 1 and
 - x = 2.8 when t = 3, then, when t = 2, the amount x is
 - (a) $\frac{6}{7}$ (b) $\frac{3}{7}$ (c) $\frac{18}{7}$ (d) n.o.t

48. A persons assets reducing in such a way that the rate of reduction of assets is proportional to the square-root of the assets existing at that time. If the assets at the beginning are Rs. 10 lakhs and they dwindle down to Rs. 10,000 after 2 years, then the person will be bankrupt in n years from the start, where : n =

- (a) $1\frac{2}{9}$ (b) $2\frac{2}{9}$ (c) $3\frac{2}{9}$ (d) none of these
- 49. [When interest is compounded continuously, the rate of change of money present at time t varies as the amount present at time t.]

If Rs. 100 invested at 5% are compounded continuously, then the original investment will double itself in

(a) 13.9 years (b) 13.6 years (c) 13.4 years (d) n.o.t

50. A sum of Rs. 2000 is deposited in a bank at the rate of interest of 6% compounded continually. The depositor wants to withdraw the entire amount at the expiry of 8 years and 4 months. If $\sqrt{e} = 1.649$, then he will get

(a) Rs. 3298 (b) Rs. 3289 (c) Rs. 3258 (d) Rs. 3285

* * * * *

Max Marks: 200

Date: 09.10.2022

ABHIMANYU BATCH CHEMISTRY : PART TEST Set - B ANSWER KEY Topic: Organic FLT

1.	(b)	2.	(a)	3.	(a)	4.	(a)	5.	(a)
б.	(b)	7.	(d)	8.	(c)	9.	(c)	10.	(d)
11.	(b)	12.	(b)	13.	(a)	14.	(b)	15.	(d)
16.	(c)	17.	(a)	18.	(b)	19.	(d)	20.	(a)
21.	(a)	22.	(c)	23.	(a)	24.	(a)	25.	(a)

Date: 09.10.2022

ABHIMANYU BATCH MATHEMATICS : PART TEST ANSWER KEY Topic: Differential Equation

26.	(c)	27.	(a)	28.	(b)	29.	(c)	30.	(a)
31.	(b)	32.	(a)	33.	(b)	34.	(a)	35.	(d)
36.	(a)	37.	(b)	38.	(c)	39.	(d)	40.	(c)
41.	(b)	42.	(a)	43.	(b)	44.	(b)	45.	(a)
46.	(c)	47.	(c)	48.	(b)	49.	(a)	50.	(a)